Machine Learning

Vrije Universiteit Amsterdam

Course Description

  • Course Name

    Machine Learning

  • Host University

    Vrije Universiteit Amsterdam

  • Location

    Amsterdam, The Netherlands

  • Area of Study

    Computer Engineering, Computer Science

  • Language Level

    Taught In English

  • Course Level Recommendations


    ISA offers course level recommendations in an effort to facilitate the determination of course levels by credential evaluators.We advice each institution to have their own credentials evaluator make the final decision regrading course levels.

    Hours & Credits

  • ECTS Credits

  • Recommended U.S. Semester Credits
  • Recommended U.S. Quarter Units
  • Overview

    The goal of this course is to present the dominant concepts of machine learning methods including some theoretical background. We'll cover established machine learning techniques such as Decision Trees, Neural Networks, Bayesian Learning, Instance-based Learning and Evolutionary Algorithms as well as some statistical techniques to assess andvalidate machine learning results.

    Machine Learning is the study of how to build computer systems that learn from experience. It is a very active subfield of Artificial Intelligence that intersects with statistics, cognitive science, information theory, and probability theory, among others. Recently, Machine Learning has gained great importance for the design of search engines, robots, and sensor systems, and for the processing of large scientific data sets. Further applications include handwriting or speech recognition, image classification, medical diagnosis, stock market analysis, bioinformatics, etc.

    The course will be taught in two parts; the first part consists of lectures with written examination. The second part of the course will have a more do-it-yourself character (e.g., practical assignment and/or literature research) and result in a report and/or presentation.

    Exam and assignment with a written report in teams of 5 students

Course Disclaimer

Courses and course hours of instruction are subject to change.

Some courses may require additional fees.


This site uses cookies to store information on your computer. Some are essential to make our site work; others help us improve the user experience. By using the site, you consent to the placement of these cookies.

Read our Privacy Policy to learn more.