Calculus of Science and Engineering

University of Newcastle

Course Description

  • Course Name

    Calculus of Science and Engineering

  • Host University

    University of Newcastle

  • Location

    Newcastle, Australia

  • Area of Study

    Calculus, Mathematics

  • Language Level

    Taught In English

  • Course Level Recommendations


    ISA offers course level recommendations in an effort to facilitate the determination of course levels by credential evaluators.We advice each institution to have their own credentials evaluator make the final decision regrading course levels.

    Hours & Credits

  • Host University Units

  • Recommended U.S. Semester Credits
    3 - 4
  • Recommended U.S. Quarter Units
    4 - 6
  • Overview


    Provides the essential mathematical techniques of Physical Science and Engineering. These are the methods of Multivariable Calculus and Differential Equations. Multivariable Calculus involves a study of the differential and integral calculus of functions of two or more variables. In particular it covers introductory material on the differential calculus of scalar and vector fields, and the integral calculus of scalar and vector functions. Differential Equations arise from mathematical models of physical processes. Also includes the study of the main analytical and numerical methods for obtaining solutions to first and second order differential equations. The course also introduces students to the use of mathematical software in the investigation of problems in multivariable calculus and differential equations.

    Learning Outcomes

    1. A sound grounding in the differentiation and integration of functions of several variables and in the methods of solution of ordinary differential equations.

    2. Skills in solving a range of mathematical problems involving functions of many variables.

    3. Basic skills in modelling real world problems involving multivariable calculus and ordinary differential equations, and in interpreting their solutions as they relate to the original problem.

    4. Skills in the application of computer software in the exploration of mathematical systems and in the solution of real-world problems relevant to the content of the course.


    Real valued functions of several variables.
    The differential operator "del".
    Cylindrical and spherical coordinates.
    General curves and surfaces.
    Normals, tangents and tangent planes.
    Double integrals.
    Iterated integrals.
    Triple integrals.
    Line integrals.
    Surface integrals.
    Vector valued functions.
    Divergence and Curl.
    Line integrals of vector fields.
    Green's theorem.
    Stokes' theorem.
    Divergence theorem.
    Formulation of differential equations for simple physical processes.
    Finding solutions to first order separable and linear differential equations.
    Interpreting solutions for first order differential equations using appropriate software.
    Solving linear second order differential equations with constant coefficients, with applications.
    Finding numerical solutions using Runge-Kutta methods via computer software.
    Laplace transform methods for initial value problems.
    Solving second order initial value problems with step function forcing terms.
    Power series solutions to second order differential equations.
    Boundary-value problems for partial differential equations.

    Assumed Knowledge

    MATH1120 or MATH1220

    Assessment Items

    Quiz: Quiz - Class
    Tutorial / Laboratory Exercises: Laboratory Exercises
    Formal Examination: Examination
    Online Learning Activity: Homework - Online assessment

Course Disclaimer

Courses and course hours of instruction are subject to change.

Credits earned vary according to the policies of the students' home institutions. According to ISA policy and possible visa requirements, students must maintain full-time enrollment status, as determined by their home institutions, for the duration of the program.