Mathematics IIA

Macquarie University

Course Description

  • Course Name

    Mathematics IIA

  • Host University

    Macquarie University

  • Location

    Sydney, Australia

  • Area of Study

    Mathematics

  • Language Level

    Taught In English

  • Prerequisites

    Course requires:

    MATH136 - Mathematics 1B or equivalent

  • Course Level Recommendations

    Upper

    ISA offers course level recommendations in an effort to facilitate the determination of course levels by credential evaluators.We advice each institution to have their own credentials evaluator make the final decision regrading course levels.

    Hours & Credits

  • Host University Units

    3
  • Recommended U.S. Semester Credits
    3 - 4
  • Recommended U.S. Quarter Units
    4 - 6
  • Overview

    This unit deals with two of the most fundamental concepts in analysis – complex analysis and vector analysis. Complex analysis is the study of complex-valued functions of complex variables. Two approaches to the study of complex-valued functions of one complex variable are discussed. The first of these, usually attributed to Riemann, is based on differentiation and involves pairs of partial differential equations called the Cauchy-Riemann equations. The second approach, usually attributed to Cauchy, is based on integration and depends on a fundamental theorem known nowadays as Cauchy's integral theorem. The concept of vector analysis provides the tools for modelling physical phenomena such as fluid flow, electromagnetic and other field-based theories. We consider vector fields and integrals over paths and surfaces, and develop an understanding of the famous integration theorems of Green, Stokes and Gauss. These theorems transform physical laws expressed in differential form to integral form.

Course Disclaimer

Courses and course hours of instruction are subject to change.

Credits earned vary according to the policies of the students' home institutions. According to ISA policy and possible visa requirements, students must maintain full-time enrollment status, as determined by their home institutions, for the duration of the program.